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ABSTRACT 1. INTRODUCTION

Rocket engines are complex and critical systemstlynos

rerir!g on simple redlines strgtegies for moni.tgrihe main been conducted to improve the diagnosis methodsatiet
functional ~parameters. This approach is typical Ofgpgines for applications at test bench or duriright]
expendabls rockets with non-gdjustable yalves lo:539%: 1] (Benoit, Bonert, Legonidec, Supié, 2009), (lanne14),
case of failure the only possible action is to ofitthe  y J. 2005). Current monitoring strategies ralystly on
engine. Anyway years of experiments on enginedsior  regjine systems which are set on critical pararset@his
subsystem penches shqw that there is space fquaatauof methodology is easy to put into place but it densaficde
the monitoring strategies because this would leadat expertise to correctly tune the physical values tiof

reduction of false alarm rates and to an improvedp esholds and it requires sensors at criticaltiona which
exploitation of test hardware. Moreover real-timaghosis 5 ot always possible. The process of selectirgféared

methods will be necessary in case of design ofligé&t  o\ents, defining the sensing locations, decidirgatowed
rocket engine controllers for next generation rél&sa ihresholds for the engine functioning is criticar fa

launchers. The work presented in this paper is pafita  g,ccessful monitoring (Cicanek, 1984). Errors iresholds
demonstratlon_ project of new dlag_n05|s tools 'fockm assignment may results in unjustified engine abuiith
engines applied to the cryogenic combustion benchission objectives loss for flight as well as fest bench
Mascotte. This bench developed by ONERA and CNES i§,mpaigns. This risk is increased when the engjrezates
used to analyze combustion and nozzle expansiof yarious regimes and it is necessary to adapt
characteristics of cryogenic fuels such as oxygew a ihresholds. For classical rockets this is espacitié case

hydrogen or methane. Model-based diagnosis tool® ha fo the test bench application but it is an importssue to
been developed for the combustion chamber and @0zz},nsider for future engines with regulation systems

water cooling circuit. The basis was the setupimipsfied

expressions for modeling the functional behavior tioé development effort (lannetti, Marzat, Piet-Lahanéral.,

water circuit and then the development of predetiv 015) focused at demonstrating the potential ofehbdsed
strategies such as parameter identification andmial diagnosis algorithms for liquid rocket engine moriitg.
filters. Anomalous event detection is obtained ngaidual

analysis based on a CUSUM test. This paper preskats
new automatic tuning strategies for the CUSUM thos
setting and the detection results obtained on Mesdioing
data.

application of this research. The previous workenetti,
Marzat, Piet-Lahanier, Ordonneau, 2015) resultecthia
development of model-based detection algorithms hhae

bench. Anomalous event detection is obtained vsidual
analysis based on a CUSUM test. After a brief nevoé the

Alessandra lannetti et This is an ope-access article distributed under the te
of the Creative Commons Attributio®i0 United States License, which per
unrestricted use, distribution, and reproductionany medium, provided t
original author and source are credited.

During the last decades, several research effat® h

the

The work presented here is the latest step of a

A cryogenic test bench was selected as benchmark

been validated for the cooling system of the Mascot
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bench and of the algorithms in sections 2 and 3deseribe
in sections 4, 5 and 6 the new contribution comgjsdf two
automatic strategies for the tuning of the detectioeshold

used in the CUSUM test. Detection results on Mdscot

firing data are presented to support the analysis.

2. MASCOTTE TEST BENCH

a :speed of sound in water (m/s)
V, :volume of cavity 2 (m”3)
S : cross sectional area for the orifice elemer2)m
q = qi = q5 : mass flow through the orifice element / outlet
mass flow from cavity 1/ inlet mass flow to cavitykg/s)

A simplified expression fok,,,using Blasius correlation,
allows to explicit the link with the mass flow whicis

The Mascotte test bench runs cryogenics oxygerglirectly measured at the outlet of the “cavity”.

hydrogen and methane. Its main components are the
combustion chamber with the injector part and cwpli
jacket and the bi-dimensional nozzle called ATACMIR

(Ordonneau, Hervat, Vingert, Petitot, Pouffary, 201
Typical operational pressures in

(combustion temperature up to 3500K).

The cooling system is a water circuit inside tharoher
and nozzle walls. The fluid is water provided bg thench
feeding system. The good functioning of the cirésivital
for the success of each test as it allows keepafgtys
margin on the combustion chamber walls.
temperatures at inlet and outlet of each sectiohefwater
circuit and mass flow are monitored all along thst tand
whenever a measurement is out of range the tesipped.

3. MODEL-BASED DIAGNOSISALGORITHMS

The model-based diagnosis strategy (lannetti,
Lahanier, 2014), (Ding, 2008),
consists in identifying one characteristic parametiethe
hydraulic behavior via parameter identification heics
(Isermann,1984), then to provide a parallel
estimation based on signals and the predictionoofiinal
model characteristics via an extended Kalman fi|@&mnow
and Willsky, 1984). For the thermal behavior ondnian
filter was developed as well but this aspect is presented
in this paper. The model details can be found amrgetti et
al. 2014, lannetti et al. 2015) together with vatidn on test
bench firings. In the work presented here we fooughe
hydraulic behavior to test the detection perforneamtien
different residual analysis approaches are used.

Starting from conservation laws we derived a sifrgai
functional model that could be applied to eachisaatf the
water circuit where pressure, temperature and fiassare
available.

The expression of the pressure evolution with timea
cavity fed by one orifice is provided in Eq. (1).

dPZ Pl_PZ a2

2 _ pS2—gs |- —
dt K, T, 1)

P;: pressure in cavity 1 (Pa)

P,: pressure in cavity 2 (Pa)

k, : pressure drop coefficient (non dimensional)
p : water density (kg/m”"3)

Pressurey ,ISCOSIty.

Marza
(Marzat et al., 2012

pressur

—-0.25
q L 1
Dy | Dy 2 @
4

k, = 03164 -

the combustion
chamber are up to 60bar and mixture ratios up to %

= dynamic viscosity (kg/(s m))
= characteristic dimension cross flow, hydrauliardeter
L = characteristic length of the flow

Thanks to Eq. (2) the pressure evolution with ticaa
be further simplified by introducing parametdrthat only
depends on the geometry of the setup and on thé flu

-0.25

N =

M = 0.3164 -

L
nTDh i Dy, (3)

The overall expression for the pressure evolutiath w
time is given in Eq. (4).

. 2 .82
P, = ?,—Z (—qz ORI O} pT RO Pz(t)> Q)

This expression for the hydraulic behavior of thatev
cooling circuit is used for parameter identificaticor
Kalman filter to provide process observer for réiahe
detection of faulty behaviors.

3.1. Parameter identification for hydraulic characteristic
behavior

When considering equation (4) in steady state ¢mmdand
1

2\ 5
introducing parametei = (%)2 , we obtain a further

simplified expression between pressure and mass-flo
measurement as given in Eq. (5).

q2(t) = ¢ - g3 () - /Py (t) — P, (D) ®)

A recursive least-square identification algorittsrused for
estimating the value af based on the measurementspP;
and P, , respectively outlet mass flow, inlet and outlet
pressure.

3.2. Kalman filter for pressure estimation

Considering the time derivative of the pressurenas-
negligible we introduce parametler:“?Z and parameter
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d=b-c. We consider that the evolution of the newTherefore, the results presented and the assodiatégs
parameted with time is negligible in the observed processshould be considered in this context.
and the dynamic system used for the extended Kafithan

35
is given in Egs (6).
. 30 u—— .,
Py = =bq, (1) +d - q3725(0) /P () = P,(®) ()
. 25
- E.
The Kalman estimation provides the outlet pressmethe
parameterd based on the input measurements of inlei 5 15|
pressure and mass-flow. g /
A, 10
4. RESIDUAL ANALYSIS: CUSUM TEST 5]
Thanks to the monitoring tools developed, we ate th 0

0 10000 20000 30000 40000 50000 60000

provide a prediction of specific measurement or time [ms]

characteristic parameter of the water circuit. Twam a ) )

diagnosis flag it is necessary to compare the piedi with Figure 1. Pressure signals for the reference test
the measurement or the identified parameter. This i *°

performed with a CUSUM test approach, a very common ., | T

test to detect changes in data, where no statistypethesis
are necessary (Basseville, Nikiforov, 1993), (Marza
Walter, Piet-Lahanier, Damongeot, 2010).

Equations (7) below give the expression of the CNMISU
sums.

Si(t) = max Gt - 1) +r(t) - 4,0) (7)

S(t) =max &t - 1) -r(t) - 4,0)

N
o
1

Mass flow [kg/s]
G

o
o
1

o
o

10000 20000 30000 40000 50000 60000
time [ms]

o

The parameterd is the minimal size of the faulty
variation that can be detected. The decision gIlES, > 1

6 or$, > A0 decide fault, else decide no fault. The Figure 2. Mass flow signal for the reference test

parameterd is a user threshold that allows reducing flagthese signals are directly used by the bench dosystem

sensitivity to small non persistent changes(t) is the o redlines monitoring. As it can be seen from inessure
re5|dyal obtained thanks to.the r.n.odel-based algontlt IS curves the signal noise is increasing from the ririgy to
the difference between the identified parameterieawhean 1o end of the test and in the outlet pressureatigne can

valug estimated over time, or it is the Kal_marefilt_esidual identify the following main events:
obtained as the difference between the filter esion and

the acquired measure. - Event n°1 : 35s<t<40s start of transient of small
pressure fluctuations mixed with some increased

5. TEST DATA AND DETECTION OBJECTIVES sensor noise

A number of tests from past Mascotte firing campaigere - Event n°2: 48s<t<49s end of pressure fluctuation

considered for validation of the detection straegiith the and signal back t nominal value

automatic tuning ofd. We focus on the following
monitored variables: pressures, mass flow and testyre
signals located at the inlet and outlet of a sectid the
water cooling system. The results presented hengsfon a
test from 2014 where some abnormal evolutions & th
outlet pressure signal were gone undetected byectdional
bench redlines. During post-test analysis thesatevarned
out to be linked to leakages in the water circéithe nozzle
and could have potentially led to critical failuséthe test.
Figures below show the evolution of inlet, outleegsure,
and mass flow. It should be noted that these fearés of
very limited amplitude and thus barely detectable.

- Event n°3: t=56s beginning of stop transient



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2016
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Figure 3. Pressure signal and main events
In the next sections we describe the tuning streseand the
results of event detection for the parameter ifieation
algorithm and the Kalman estimator when coupledh e
automatic tuning method for the CUSUM test. The
detection analysis is tested over the ability tapgdo sensor
noise evolutions and on the detection of the maants.

6. AUTOMATIC THRESHOLDS TUNING STRATEGIES

In order to correctly determine thé for detection two

methods have been tested:
Standard deviation of estimation residual

Maximum deviation of estimation residual

6.1. Standard deviation of estimated residual

Here the parameted is calculated with the following
method as expressed in Egs (8) and (9).

1 t
() = taee* |- Z (r@—7) (8)
i=t-0

6(t) =
a8t —dt)+(1—a) tae \/% Y, _o(r(t) — )

9)

Where r(t) is the residual and is the allowed average
reference value given by the difference between th
estimated parametear and its average over the latest time
interval for the parameter identification method, the
Kalman estimation residual for the other algorithm.

The following parameters have to be tuned:

tqer: for standard noise distribution this parameter
allows to define a statistical threshold around the
mean value of the parameter. For example fol
tqer =3 We cover 99.7% of probability of noise
behavior.

A: this parameter is linked to the CUSUM sums and
allows to tune the algorithm detection sensitivity

a: this parameter allows to provide a first-order
temporal filtering ofé during online calculation to
reject random fluctuations

0. this parameter corresponds to a time window
and depending on the calculation frequency it gives
the number of samples used to estimate the
referenced . In the analysis shown here the
acquisition rate is 1000Hz and the valueéofs
given in number of samples. Its value has an
impact on the mean calculation and a good
compromise has to be selected to improve
algorithms  implementation for real time
application. A bigger buffer of data will require
larger memory allocations and thus overall
calculation time.

6.2. Maximum variation of estimated residual

Another possible strategy is to identify the maxmu
variation of the residual over a nominal periodtioé test
run.

0 = tger * MaXj—e_g.| [T (D] (10)

() =a-8(t—dt) + (1 — @) tger - MaXi——g:e| [T  (11)

The definitions of the residual and parameters éaumed
are the same as for the standard deviation metfiibdtiae
difference that,,, in this case does not have an indication
of probability of detection.

7. RESULTSFOR PARAMETER IDENTIFICATION

7.1. Adaptive threshold based on standard deviation

Figure 4 shows the results of the automatic calimuavith
tqer = 3, corresponding to a statistical probability of 2%.
of detectionp. = 0.97 and= 500 pts.

4e-005 |

2e-005

-2e-005

identification residual

-4e-005

45000 50000 55000

time [ms]

35000 40000

Figure 4. Evolution of thresholii(dotted line) and
detection residual (solid line) for standard dewviaimethod



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2016

At main event n°l the residual approaches the upp

threshold but no important violations are seen.nEv82 is

clearly visible around 48s and the estimated redidu

violates the lower limit. In this case the autormadi
calculation filters enough the residual variatiantbat the
induced increase of the threshold is limited amgssivithin
the range of the allowed nominal variations.

Figure 5 shows the detection results with the iatid
setting for the threshold calculation atw.

2.0

detection flag

o o
Y
I

o
>
1

0.2

45000 50000 55000

time [ms]

0.0 T t
30000 35000 40000 60000

Figure 5. Detection flags for standard deviatiarshold

To reduce sensitivity to small events it is necssda
increase thel factor or the minimum size of th& This
choice is a compromise for the detection accuracy.

With an increased size of, for example 4 times the
standard deviation and the sarhave obtain detection of
events n°1l and 2, corresponding to the main “abatirm
fluctuations between. Detection flags are showfigure 6.
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Figure 6. Detection flag for standard deviation

Increasing the size of allows filtering out parameter
evolutions linked to noise levels but it also reehic
detection sensitivity.

7.2. Adaptive threshold based on maximum variation

% he maximum variation is by definition the largessidual

allowed during the latest nominal operations sosike ofd
should not be modified. The only tuned parameténusA.

Results of the automatic calculation &fwith t;..,=1 are
shown in Figure 7 (other settings are7, « = 0.97 and
6=500).

The adaptive threshold follows the residual vamiagi and as
for the standard deviation method it allows to detdearly
main event n°2 but the faulty variation has an ingat
impact on the threshold itself and results in aperary
increase of the upper and lower limits just after ¢vent.

Se-05

4e-05
3e-057
2e-05

le-05—

-2e-057

identification residual

-3e-057

-4e-057

-5e-0!

-05 T T T
30000 45000 50000 55000

time [ms]

T T
35000 40000 60000

Figure 7. Evolution of threshokil(dotted line) and
detection residual (solid line) for maximum varaeti
method

This behavior might be improved by introducing dagieon
the threshold evaluation after the detection bwtauld in
turn result in a loss of sensitivity.

The detection flag is provided in Figure 8 with;g=1 and
A=7, o = 0.97 and#=500. These are the settings that
provided the most accurate detection flags.

2.0

1.8+
1.6
1.4

e
™
I

ction flag

1.0
2 0.8
@ p
=

0.6
0.4
0.2

45000 50000 55000

time [ms]

Figure 8. Detection flag with maximum variation

0.0 T T
30000 35000 40000 60000

To reduce the number of false alarms, such as I f
between 50s and 55s, a very largaup to 7 times the
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minimum fault size is needed, which puts into geesfault
sensitivity

When calculating the maximum variation, the buféargth
considered can have an impact on the detectionitiséys
as there could be transient effects. With a smaillgfer of
10 points, a similar detection performance is otadi by
setting a smallet = 4. This implies that a variation of lower
intensity could also be detected. As shown in Fégar
detection flags are raised in coherence with thentsv/in
Figure 3 and with no false alarm.

2.0

1.8;
1.6:
1.4;

detection flag

c o o 9 B p
NoORoo ola ° r\IJ
I T T N T N1 L L

=
o

30000 40000

time [ms]

0 10000 20000 50000 60000

Figure 9. Detection flag with reduced buffer
8. RESULTSFOR PRESSURE KALMAN ESTIMATION

8.1. Adaptive threshold based on standard deviation

Figure 10 shows the results of the automatic catmon
with t4.; = 3, a = 0.97 and= 500 pts.

1.5e+05

Loeros1 ™
5.0e+04 |
0.0+00
-5.0e+04

-1.0e+05 e -

kalman residual [Pa]

-1.5e+05

-2.0e+05

-2.5e+05
30

40000 45000 50000 60000

time [ms]

000 35000 55000

Figure 10. Evolution of thresholil(dotted line) and
detection residual (solid line) for standard dewiaimethod

The behavior of the Kalman residual is differemnfr the
one of parameter identification. By definition tK&lman
filter is able to adapt to transients and it takée account
the noise level. As a consequence the algorithness
sensitive to the level of fluctuations of the refece test.

With atg.=3, 1=2, o = 0.97 andd = 500 no detection is
achieved.

With a smaller thresholt};..=1, see Figure 11, the results
are not improved. Beside the detection of the stapsient,
flags are raised at 30s and 50s in relations teenimicrease
and can be considered as false alarms.

=2 =N
b r ® @ o
I 1 I |

detection flag
o = =
2

45000 50000 55000

time [ms]

35000 40000 60000

Figure 11. Detection flags with standard deviaton

8.2.

The results for the automatic calculationsobased on the
maximum variation witht;,,=1, 2= 2, a = 0.97 and? =500
are shown in Figure 12. With these settings neat&mn is
achieved. To improve this, we reduced the buffef=H0.
This has a direct impact ah The detection results are not
much improved witht;..=1, A=2 andd =10 as shown in
Figure 13.

2.0e+05

Adaptive threshold based on maximum variation

1.5e+057

1.0e+057
5.0e+04
0.0e+00

-5.0e+04

kalman residual [Pa]

-1.0e+054

-1.5e+057

-2.0e+05
30

45000 50000 55000

time [ms]

000 35000 40000 60000

Figure 12. Evolution of thresholi(dotted line) and
detection residual (solid line) for maximum vargati
method

The most important parameter to define the detectio

sensitivity is the ratio of the fluctuations to tlaeerage
noise level.
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Figure 13. Detection flag with maximum variatién

9. DISCUSSION

The results obtained show a good detection perfocma
with the parameter identification approach and anddrd
deviation method for the tuning of the CUSUM thiash
Figure 6 shows that detection of the two main alwabr
events is obtained. To improve this behavior, tlaimum
variation type helps by providing detection of tktop
transient as well. Figure 9 shows that flags aisethas
expected. The standard deviation method is stéfguable
as it is more robust to the sample size and in adse
detection is less impacted by the residual vamatibhe
downside is an increased calculation load witheesto the
maximum approach.

Detection with the Kalman filter of these very shiallts is
more difficult as the level of fluctuations withsgect to the
sensor noise is too low. With both methods of thoés
calculation the detection flags cannot isolate éwvents.
With a standard deviation method arg.=3 no detection is
possible and with decreaseg; only the stop transient is
detected. This result is nevertheless encouragiritp w
respect to detection robustness and further asatyslarger
faults shall be performed.

10. CONCLUSIONS

Adaptive tuning strategies are at the basis of euogel-
based diagnosis system. The algorithms developed
previous works (lannetti, Marzat, Piet-Lahanierd@rneau
2015), allowed calculation of detection residudlatthave
to be analyzed via a decision logic. The CUSUM teas
chosen but it requires setting of a detection tioks To
automatically choose its value two tuning stragegivere

supposed to be more reliable against false alamtsitb
proved to be more difficult to tune. The impacthod tuning
methods also depends on the specific algorithmiuhing

settings are not the same for parameter identificaand

Kalman filters, which are based on different modsighe

system.

The objective of the new tools with respect to thessical
redline monitoring is to detect small changes witkihorter
reaction time but also to provide generic tools tiha not
need a threshold setting dependent on the engiestiqug
point. This has been obtained thanks to the prapose
strategies.

The results over the test case have shown goodalbver
potential to detect very small events. Although thain
parameters have to be tested and thoroughly armbhai®re
going into application for run time operation, ortbey are
set they are independent from the specific engperaiing
point.

REFERENCES

Benoit, S. P.Bonert, S. Legonidec, P. Supié, (2009
diagnostic demonstrator: a platform for the evalaat
of real time diagnostic data dedicated to spaceirezg)
Conference of the Society for Machinery Failure
Prevention Technology (MFPT), Dayton OH, USA.

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki,.,
(2003).Diagnosis and Fault-Tolerant Contrabpringer
Verlag, Berlin Heidelberg.

Chow, E., Willsky, A.S., (1984 Analytical redundancy and
the design of robust failure detection systemsEE
Transactions on Automatic Control, Vol. 29(7), page
603-614.

Cicanek, H., (1985)Space Shuttle main engine failure
detection,American Control Conference, Boston MA,
USA.

Ding, S.X., (2008), Model-based fault diagnosis
techniquesSpringer Verlag, Berlin Heidelberg.

lannetti, A., (2014)Overview on European efforts on health
monitoring/management systems for rocket engines.
Space Propulsion Conference, Kéln, Germany.

lannetti, A., Marzat, J., Piet-Lahanier, H. et gr014),
Development of model based fault diagnosis algorith
for the Mascotte cryogenic test ben¢®P Journal of

in Physics: Conference Series, Vol 570, number 7.

lannetti, A., Marzat, J., Piet-Lahanier, H. et gR015),
Fault diagnosis benchmark for a rocket engine
demonstrator9” IFAC Symposium on Fault Detection
Supervision and Safety for Technical Processeds,Par
France, IFAC-PapersOnLine 48(21), pages 895-900.

deve|0ped and presented in this paper. The reminidanneui, A., Marzat, J., Piet-Lahanier, H., Ordeau, G. et

parameters to set are mainly generic and do natradkpn
the test targets. For the standard deviation apprdhe
settings also implicitly provide a statistical mgento the

detection threshold. The maximum variation methsd i

al., (2015),HMS developments for the rocket engine
demonstrator Mascotte51®' AIAA/SAE/ASEE joint
Propulsion Conference.



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2016

Isermann, R., (1984)Process fault detection based on
modeling and estimation methods—a survey.
Automatica, Vol. 20(4), pages 387-404.

Marzat, J., Walter, E., Piet-Lahanier, H., Damorigéo,
(2010), Automatic tuning via kriging-based
optimization of methods for fault detection and
isolation, IEEE Conference on Control and Fault-
Tolerant systems, Nice, France, pages 505-510.

Marzat, J., Piet-Lahanier, H., Damongeot, F., Walt,
(2012), Model based fault diagnosis for aerospace
systems: a surveyProceedings of the Institution of
Mechanical Engineers, Part G: Journal of aerospace
engineering, Vol. 226(10), pages 1329-1360.

M. Basseville and I. V. Nikiforov.Detection of Abrupt
Changes: Theory and ApplicationPrentice Hall
Englewood Cliffs, NJ, 1993.

Ordonneau, G., Hervat, P., Vingert, L., Petitot,uffary,

B., (2013),First results of heat transfer measurements

in a new water-cooled combustor on the Mascotte
facility, 4" European conference for aerospace sciences
(EUCASS), Munich, Germany.

Wu, J., (2005),Liquid propellant rocket engines health
monitoring- a survey ACTA Astronautica, Vol. 56,
pages 347-356.



